您好,欢迎来到搜客无忧!

大学的数学课程_大学的数学课程有哪些

  作者:美联立刻说英语培训学校发表时间:2023-10-27点击量:82

大学数学课程有哪些

大学数学专业可学习的课程分为公共课程和专业课程,具体如下:

1、公共课程:大学英语、体育、政治(马克思主义思想概论、毛泽东思想与中国特色社会主义理论、思想道德修养与法律基础、中国近现代史纲要)、数学(高等数学、数学分析、解析几何)、高等代数(线性代数)、概率论与数理统计。

2、专业课程:复变函数论、实变西数与泛函分析、抽象代数(近世代数)、常微分方程、微分几何、数学计算方法、初等数学研究(初等代数和初等几何)、数学模型、数学实验、拓扑学、数学历史、物理学、计算机基础知识、C语言/Nava语言等,以及根据应用方向选择的基本课程。

材料补充:

1、数学专业为本科专业,基本修业年限为四年,毕业后可授予理学学士学位。

数学专业要求学生系统学习数学和应用数学的基本理论和方法,受到严格的数学思维训练,掌握计算机的原理和运用手段,并通过教育理论课程和教学实践环节,形成良好的教币素养,培养从事数学教学基本能力和数学教育研究、数学教学研究、数学科学研究、数学实际应用等基本能力。

2、数学专业培养目标:本专业培养德、智、体、美全面发展的掌握数学与应用数学科学的基本理论、基础知识和基本方法,能够运用数学知识和使用计算机解决若干实际数学问题,具有现代教育观念,适应教育改革需要,及具有良好的知识更新能力和创新能力的中等学校数学师资和教育、教学管理工作及科学研究的专门人才。

大学数学课程有哪些

大学数学专业的学生需要学习的课程包括高等代数、数学分析、解析几何、概率论、高等几何、微分几何、

复变函数

、实变函数、微分方程、近世代数、初等数论、普通物理学、计算机等。

数学的应用空间广阔,就业面相应也比较广阔,无论是进行理论研究、科研

数据分析

、软件开发,还是从事金融保险、

国际经济与贸易

、工商管理、通讯工程、建筑设计等行业,都离不开相关的数学专业知识。

数学专业毕业生具有比较扎实的理论基础,只要再学习一些相关知识,他们可以转向很多理工、经济类专业,比如计算机、统计、金融、经济学等,因此他们在找工作的时候是具有很大优势的。

另外,数学对于中考、高考都是十分重要的,数学专业毕业的学生也可以选择考取

教师资格证书

,做一名专业的数学教师。

大学数学专业学什么课程

大学数学专业学什么课程如下:

数学分析III analysis calculus 5

高等代数II algebra algebra 5

高等代数II algebra algebra 5

程序设计 CS cs 4

常微分方程 analysis ODE 3

抽象代数 algebra algebra 3

复变函数 analysis 函数论3

实变函数 analysis 函数论3

数学模型 applied math applied math 3

概率论 PS probability 3

泛函分析 analysis 泛函分析3

数理方程 analysis PDE 3

基础力学 applied math applied math 3

毕业论文(含专题讨论) applied math applied math 6

数学与应用数学专业必修课程:

以上+

拓扑学 geometry topology 3

微分几何 geometry geometry 3

信息与计算科学专业分4个方向,每个方向要求的课程不一样,比如说计算数学方向要求学微分方程数值解法以及其他一些计算类的选修课程。

总的来说,必修课就是数学专业本科的一些骨干课程,是所有合格的数学专业本科生都应当掌握的基础知识。

所以也没什么挑肥拣瘦的。

本院的课程设置,信计方向的学生不用修拓扑与微分几何。

至于选修课程,本人上过的都组合数学、数论基础,旁听过抽代续论、应用偏微分方程、复分析, etc.其实虽然列表里面有这么多选修课,但并不是都能开出来。

比如说多复变函数论,本院能开多复变的老师大概也就一两个。

而且实际上本科生能听的课程资源不仅仅是本科课程,研究生课程也可以随意旁听。

本人也旁听过一两门研究生课。

大学数学专业都有哪些课程

1、纯粹的数学专业主干课程:初等数论、概率论与数理统计、数学教学论、小学数学教材教法、数学分析选讲、复变函数、近世代数、高等代数选讲、数学教育学等、数学与应用数学。

2、应用数学主要课程:分析学、代数学、几何学、概率论、物理学、数学模型、数学实验、计算机基础、数值方法、数学史等,以及根据应用方向选择的基本课程。

3、信息与计算科学专业主要课程:数学分析、高等代数、几何、概率统计、数学模型、离散数学、模糊数学、实变函数、复变函数、微分方程、物理学、信息处理、信息编码与信息安全、现代密码学教程、计算智能、计算机科学基础、数值计算方法、数据挖掘、最优化理论、运筹学、计算机组成原理、计算机网络、计算机图形学、c/c++语言、java语言、汇编语言、算法与数据结构、数据库应用技术、软件系统、操作系统等。

大学数学有哪些课程

高等数学

线性代数

复变函数

常微分方程

数学物理方法

概率统计

另外,根据专业不同,可能还会有其他科目

贰大学数学包括哪些

“大学里读的数学”统称“大学数学”,教育部教育司属下有“大学数学课程指导委内员会”。

下面有很多“分容指导委员会”而“工科数学课程分指导委员会”只是其中的一个。

“工科数学课程分指导委员会”管辖的课程有“高等数学”、“线性代数”、“概率论与数理统计”、“复变函数与积分变换”、“数理方程与特殊函数”、“计算方法”六门。

经管类的少点,并且高等数学(经管类一般称为微积分)

高等数学课程的内容为:函数与极限,一元函数微分学,一元函数积分学,空间解析几何,多元函数微分学,多元函数积分学(重积分与曲线、曲面积分),级数(数项级数、幂级数、傅立叶级数),微分方程,场论初步(梯度、散度、旋度)。

叁大学数学专业都有哪些课程要详细

专业基础类课程:

解析几何

数学分析I、II、III

高等代数I、II

常微分方程

抽象代数

概率论基础

复变函数

近世代数

专业核心课程:

实变函数

偏微分方程

概率论

拓扑学

泛函分析

微分几何

数理方程

专业选修课:

离散数学(大二上学期)

数值计算与实验(大二下学期)

分析学(1)

代数学(1)

伽罗瓦理论

复分析

代数数论

动力系统引论

基础数论

偏微分方程(续)

一般拓扑学

理论力学

数学建模

微分拓扑

调和分析

常微分方程几何理论

分析专题选讲

组合数学与图论

范畴论

紧黎曼曲面

黎曼几何初步

偏微近代理论

交换代数

代数拓扑

同调代数

流形与几何

小波与调和分析

李群李代数

分析学Ⅱ

代数学Ⅱ

代数K理论

代数几何

多复变基础

泛函分析(续)

肆大学数学专业基础课程有哪些

专业基础课有来数学分析、高等代自数、解析几何、概率论与数理统计:这三者是老三门,将来如果考研时要用到的;近代数学的新三门是:拓扑学、实变函数与泛函分析、近世代数(也叫抽象代数);另外其他的一些常见的分支包括楼上所说的复变函数、常微分、运筹、最优化,数学模型。

伍数学专业有哪些专业课程

数学专业的专业课程有:

一、数学分析

又称高级微积分,分析学中最古老、最基本的分支。

一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。

它也是大学数学专业的一门基础课程。

数学中的分析分支是专门研究实数与复数及其函数的数学分支。

它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。

这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。

二、高等代数

初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。

沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。

发展到这个阶段,就叫做高等代数。

高等代数是代数学发展到高级阶段的总称,它包括许多分支。

现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。

三、复变函数论

复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。

复变函数论历史悠久,内容丰富,理论十分完美。

它在数学许多分支、力学以及工程技术科学中有着广泛的应用。

复数起源于求代数方程的根。

复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。

在很长时间里,人们对这类数不能理解。

但随着数学的发展,这类数的重要性就日益显现出来。

复数的一般形式是:a+bi,其中i是虚数单位。

四、抽象代数

抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。

伽罗瓦〔1811-1832〕在1832年运用群的概念彻底解决了用根式求解代数方程的可能性问题。

他是第一个提出群的概念的数学家,一般称他为近世代数创始人。

他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。

五、近世代数

近世代数即抽象代数。

代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。

初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。

法国数学家伽罗瓦在1832年运用群的思想彻底解决了用根式求解多项式方程的可能性问题。

他是第一个提出群的思想的数学家,一般称他为近世代数创始人。

他使代数学由作为解代数方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。

申请试听课程

提交后,免费为您匹配专业课程

机构入驻 | 帮选课 | 公司介绍 | 联系我们 | 网站地图

版权所有:(c)2024 武汉涵宝信息科技有限公司 All Rights Reserved 备案号:鄂ICP备2022007586号-13 技术支持:搜客无忧